A weathered mass of 529kg was found on the surface of basalt, M.H.Hey, Cat. Met., 1966, p.141. Described and analyzed, E.P.Henderson and S.H.Perry, Smithsonian Misc. Coll., 1948, 110, (12), (M.A.10-520), Contr. Soc. Res. Meteorites, 1943, 3, p.185. Study of shock effects, A.V.Jain and M.E.Lipschutz, Meteorite Research, ed. P.M.Millman, D.Reidel, Dordrecht-Holland, 1969, p.780. Analysis, 8.23% Ni, 20.4 ppm Ga, 41.8 ppm Ge, 0.64 ppm Ir, E.R.D.Scott et al., GCA, 1973, 37, p.1957. Description, shock deformation, V.F.Buchwald, Handbook of Iron Meteorites, Univ. of California, 1975, p.538. Study of weathering product awaruite, T.P.Pedersen, MAPS, 1999, 34, p.A90 (abs.).
Location: USA
Emery
Discovered on a pile of stones cleared from a field. It lay in a farm yard from about 1962 until it was recognized as a meteorite in 1968, Met. Bull. 51, Meteoritics, 1972, 7, p.222. Analysis and mineralogy, B.Mason and E.Jarosewich, Min. Mag., 1973, 39, p.204. Analysis of metal, 7.0% Ni, 11.5 ppm Ga, 47.1 ppm Ge, 2.4 ppm Ir, J.T.Wasson et al., GCA, 1974, 38, p.135. Noble gas and Cl-36 contents, F.Begemann et al., GCA, 1976, 40, p.353. Study of metal-silicate relations, R.H.Hewins et al., Meteoritics, 1977, 12, p.254 (abs.). Cooling rate calculation based on schreibersite growth model, A.A.Kulpecz,Jr. and R.H.Hewins, GCA, 1978, 42, p.1495. Petrographic and chemical characterization of igneous lithic clasts, D.W.Mittlefehldt, GCA, 1979, 43, p.1917. Composition and structure of olivines and olivine coronas, C.E.Nehru et al., GCA, 1980, 44, p.1103. Oxygen fugacity estimations, W.N.Agosto, LPSC, 1981, 12, p.3 (abs.). Fission track study, uranium content of merrillite, G.Crozaz and D.R.Tasker, GCA, 1981, 45, p.2037; G.Crozaz et al., GCA, 1982, 46, p.749. Subgroup classification, R.H.Hewins, J. Geophys. Res., 1984, 89 (suppl.), p.C289. Oxygen fugacity data of pyroxene, R.H.Hewins and G.C.Ulmer, GCA, 1984, 48, p.1555; see also, LPSC, 1983, 14, p.311 (abs.). Ar-Ar age 3.71 Ga, D.D.Bogard et al., GCA, 1990, 54, p.2549. Mg isotopic composition of plagioclase, M.T.Bernius et al., LPSC, 1991, 22, p.93 (abs.). Cosmogenic radionuclides data of metal and silicate, A.Albrecht et al., LPSC, 1992, 23, p.5 (abs.); see also, H.Nagai et al., GCA, 1993, 57, p.3705. Study of olivine coronas, high temperature cooling rates, A.Ruzicka et al., GCA, 1994, 58, p.2725. Re-Os systematics, J.J.Shen et al., LPSC, 1997, 28, p.1297 (abs.); see also, GCA, 1998, 62, p.2715. Cosmogenic nuclide Fe-60 activity depth profiles, K.Knie et al., MAPS, 1999, 34, p.729. Chlorine abundance, D.H.Garrison et al., MAPS, 2000, 35, p.419. Cosmogenic radionuclide and light noble gas abundances in silicate and metal phase, A.Albrecht et al., MAPS, 2000, 35, p.975. Calculation of cooling rate, W.D.Hopfe and J.I.Goldstein, MAPS, 2001, 36, p.135.
Estacado
A stone of 290kg was found in 1883, twelve miles S of Hale Center, M.H.Hey, Cat. Met., 1966, p.156. Described and analyzed (with improbably high alkali concentr.), K.S.Howard and J.M.Davidson, Am. J. Sci., 1906, 22, p.55. Further analysis, 27.88% total Fe, B.Mason and H.B.Wiik, Am. Mus. Novit., 1963, (2154), (M.A.16-639). Porosity and density, K.Keil, Chem. Erde, 1962, 22, p.281; see also, D.T.Britt and G.J.Consolmagno, MAPS, 2003, 38, p.1161. Olivine Fa19, B.Mason, GCA, 1963, 27, p.1011. Structure and composition of plagioclase, W.R.van Schmus and P.H.Ribbe, GCA, 1968, 32, p.1327. TL-data and pre-atmospheric shape, D.W.Sears, Earth Planet. Sci. Lett., 1975, 26, p.97. Oxygen isotopic composition, N.Onuna et al., GCA, 1972, 36, p.157; R.N.Clayton et al., GCA, 1991, 55, p.2317. Oxygen isotopic composition of mineral fractions, R.N.Clayton et al., Earth Planet. Sci. Lett., 1976, 30, p.10. Noble gas abundances in acid-resistant residues, R.K.Moniot, GCA, 1980, 44, p.253. Al-26 depth profile measurement, J.C.Barton et al., GCA, 1982, 46, p.1963. Fission track densities in phosphates, P.Pellas and C.Fi
Albin
Though picked up in 1915, this beautiful pallasite was not recognized as a meteorite until 1935 by H.H. Nininger. It has very clear olivine crystals as large as 37 mm.
Bear Creek
Formerly called the “Colorado Meteoriteâ€, This iron was collected at and elevation of 8,000 feet in the Rocky Mountains forty miles west of Denver this was once part of the Amherst collection where it was named “Aeriotoposâ€, belonging to the sky. (SWML Book)A mass of about 500lb was found about 25 or 30 miles from Denver, M.H.Hey, Cat. Met., 1966, p.44. Description, C.U.Shepard and J.Henry, Am. J. Sci., 1866, 42, p.250, 286, E.Cohen, Meteoritenkunde, 1905, 3, p.299. Analysis, E.Goldberg et al., GCA, 1951, 2, p.1. The specimen in the Nat. Hist. Mus. London (BM.1959,973) has been intensly shocked, H.J.Axon, Prog. Materials Sci., 1968, 13, p.221, A.L.Graham et al., Cat. Met., 1985, p.65. Vanadium content of troilite and metal, T.A.Linn,Jr. et al., GCA, 1968, 32, p.561. Further analysis and classification, 9.8% Ni, 18.4 ppm Ga, 32.8 ppm Ge, 0.019 ppm Ir, E.R.D.Scott et al., GCA, 1973, 37, p.1957. Nitrogen abundance in metal and troilite, E.K.Gibson and C.B.Moore, GCA, 1971, 35, p.877. Description, V.F.Buchwald, Handbook of Iron Meteorites, Univ. of California, 1975, p.307. Hg isotopic composition in acid-resistant residues, A.N.Thakur and P.S.Goel, Earth Planet. Sci. Lett., 1989, 96, p.235. Mn-Cr systematics of chromite and phospates, I.D.Hutcheon et al., LPSC, 1992, 23, p.565 (abs.). Pd and Ag isotopic composition, J.H.Chen and G.J.Wasserburg, LPSC, 1995, 26, p.235 (abs.). Oxygen isotopic composition, R.N.Clayton and T.K.Mayeda, GCA, 1996, 60, p.1999. Contains large chromite inclusion, J.T.Wasson et al., MAPS, 1997, 32, p.A137 (abs.). Chemical composition and trace element contents of phosphate minerals, E.J.Olsen et al., MAPS, 1999, 34, p.285. Origin and chemical composition of massive chromite inclusion, J.T.Wasson et al., GCA, 1999, 63, p.1219. Further analysis, J.T.Wasson, GCA, 1999, 63, p.2875. Al/Mg ratios and Mg isotopic composition of individual plagioclase grains, E.Zinner and C.G
Beeler
A stone of 8.64kg was plowed up on Caster Farm, Met. Bull. 47, Meteoritics, 1970, 5, p.104. The Kansada stone previously assigned to the Ness County find of 1894 is weathered and brecciated and probably identical to Beeler, A.L.Graham et al., Cat. Met., 1985, p.66. Description and location, W.F.Read, Meteoritics, 1972, 7, p.417. Olivine Fa30, J.T.Wasson, Meteorites, Springer Verlag, 1974, p.283. Petrology, mineral analysis, olivine Fa32.4, pyroxene Fs25.7, noble gas data, E.A.King and G.F.Herzog, Meteoritics, 1978, 13, p.193. Ni and Co contents of metal phases, F.Afiattalab and J.T.Wasson, GCA, 1980, 44, p.431. Cosmic-ray exposure age 33.1 Ma, T.Graf and K.Marti, Meteoritics, 1994, 29, p.643. Pyroxene composition, R.H.Jones, LPSC, 1997, 28, p.681 (abs.). Ar-Ar dating of shock event, J.Kunz et al., MAPS, 1997, 32, p.647.
Bison
A mass of about 3kg was found about 6.8 km NE of Bison, olivine Fa31.9, Met. Bull. 62, Meteoritics, 1984, 19, p.50. Another piece of 8kg was found in 1958. A heavily shocked breccia, olivine Fa31.9, A.L.Graham et al., Cat. Met., 1985, p.73. Classification and mineral analysis, an impact-melt breccia, consisting of unmolten clasts and accessory melt-breccia clasts in a darkend matrix, B.Dominik and F.Bussy, Meteoritics, 1994, 29, p.235.
Canyon Diablo
Canyon Diablo meteorites come from the most famous impact crater in the world; Meteor Crater, Arizona. These iron meteorites are classified as IA, coarse octahedrite. Many contain inclusions of graphite. When a graphite inclusion pops out of the host meteorite it is called a graphite nodule. Another interesting fact about Canyon Diablo is the occurrence of carbonados or black diamonds formed by impact on earth or in space. These meteorites are typically characterized by classic meteorite features like sharp ridges, holes and bowls.